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Abstract 

Computer-related accidents have caused injuries and fatalities  in mining as well as other indus
tries. Normal accident theory  (NAT) explains  that some accidents are inevitable  because of system 
complexity. NAT is  a  classic  argument  in  organizational sociology  although it  has  been  criticized as 
having imprecise deWnitions  and  lacking  criteria  for  quantifying complexity. These  limitations  are 
addressed by a  unique  approach that  recasts  this  organizational theory  into an engineering-based 
methodology  to quantify  NAT complexities  of  computer-based  systems. 

In this  approach complexity is  categorized as  external or  internal. External complexity is  deWned by 
the  external behavior  of  a system, and is  quantiWed by these  dependent variables: system  predictability, 
observability,  and usability. Dependent  variable  data  contain the  perceptions  of  32 subjects  running 
simulations  of  a system. The  system’s  internal complexity  is  characterized by modeling system-level 
requirements  with the  software  cost  reduction (SCR)  formal method. Model attributes  are  quantiWed 
using 15 graph-theoretical metrics—the independent  variables. Five of  15 metrics are  correlated  with 
the  dependent  variables  as  evidenced by structure  correlations  exceeding 0.25, with standard errors 
<0.10 and a  95% conWdence  interval. The  results  also show  that  the  system  predictability, observabil
ity, and usability  decreased as  NAT complexities increased. This  research takes  a step forward in oper
ationalizing NAT for computerized systems. The  research beneWts mining and other  industries  as  well. 



1. Introduction 

Increasingly, computer  technology is being embedded into  a  wide  variety of systems. 
This technology can enable  added Xexibility,  provide  new  functionality,  and help make  sys
tems  more  cost-competitive.  Thus, traditional hardwired electro-mechanical  and analog 
systems,  having  well-known and predictable  failure  modes, are  often  replaced with  com
puter  hardware  and software.  This widespread  use  increases  our  dependence  on and expo
sure  to computerized  systems—more importantly, it greatly impacts safety. 

Computer-related accidents have  caused harm  to  the  environment,  injuries,  and fatali
ties. Over  400  computer-related accidents were  documented up to  1995 (Neumann, 1995); 
it  was estimated  that 2000  deaths were  computer-related as  of  1994  (MacKenzie, 1994). 
The  safety  issues of computerized systems have  extended to  the  mining industry.  Tradition
ally  thought of as low-tech,  the  industry is  now using  complex,  computerized  mining sys
tems  such as “driverless” underground and surface  haulage  vehicles, longwall  mining 
machines,  hoists and elevators, and mine  atmospheric  monitoring systems. From  1995 to 
2001,  11 computer-related mining incidents in the  US  were  reported by  the  Mine  Safety 
and Health Administration;  71 computer-related mining incidents were  reported in Aus
tralia (Sammarco,  2003). 

The  problem  is that we  are  ill-equipped to identify,  understand, and  manage  the  particu
lar safety  issues  of computerized  systems. Systems utilizing computer  technology are  more 
complex;  as a  result,  new hazards are created that  are diYcult  to  recognize or  mitigate with 
traditional  safety  techniques. Traditional safety engineering techniques are  being  stretched 
to the  limit because  of many  factors, including the  “fast pace  of technological  change,” 
“new types  of hazards,” and “increasing complexity and coupling” (Leveson,  2004). 

To engineer safer computer-based systems,  new  approaches  are  needed. One  approach 
establishes a new accident model based on systems  theory (Leveson,  2004). The  model is 
intended as a  theoretical foundation for new  safety analyses and approaches. Another 
approach  uses an interdisciplinary complexity model encompassing the  six  domains of 
mathematics, computer  science,  economics, psychology  and cognitive  sciences, social sci
ence,  and  system science  (Coskun and Grabowski, 2001). 

Addressing complexity is  important in safety  analysis because  as  computer-based sys
tems  proliferate,  system  sophistication and complexity  escalate  and increase  the likelihood 
of design errors and the  introduction of  new  hazards (Littlewood and Strigini, 1992). Nor
mal accident theory  (NAT) explains that some  system  accidents are  inevitable  because 
complex systems are  highly  interconnected,  highly  interactive,  and  tightly coupled  (Perrow, 
1999). Although NAT is a classic approach  in organizational sociology, it remains theoret
ical rather than empirical. To our knowledge, only one attempt to operationalize NAT has 
been  made,  not  for computer-based systems but for a  specialized  application to petroleum 
reWnery processing. 

This paper  presents a  new approach to operationalize  NAT  as an engineering-based 
methodology,  with the  goal  of  quantifying system-level  complexities  of  computer-based 
systems.  A  methodology is presented for early complexity identiWcation and quantiWcation 
of system  requirements. This enables an  early  assessment  of NAT complexities that  can 
impact  safety  before  they are  propagated to other  life-cycle  phases. Also, changes  are  gen
erally  easier and less costly  to implement at the  requirements phase. Armed with an eVec
tive  complexity  assessment,  one  can compare  options,  target  the  requirements to simplify, 
and measure  simpliWcation eVorts. 



The  speciWc  aims of this research to operationalize  NAT as follows: 

1. Identify a  formal modeling method for system  requirements which will  aVord quantiW
cation of NAT  attributes. 

2. Identify the  NAT attributes  to be operationalized with respect  to system requirements. 
3. Identify potential metrics for  each NAT attribute to be  operationalized. 
4. Identify the  metrics that are useful measures or indicators of NAT  complexity. 

Several hypotheses  (Table  1) are  formed to help realize  these speciWc aims. 

aT ble 1 
    A summary of the research hypotheses and associated rejection criteria 

  Null hypothesis H0	  Rejection criteria 

       (1) There is no correlation between NAT metrics and system predictability	  Structure correlation 7 .250 
       (2) There is no correlation between NAT metrics and system observability	  Standard error 6 .100 
       (3) There is no correlation between NAT metrics and system usability	   95% ConWdence interval 

does not cross zero 
     (4) Increasing complexity does not decrease system predictability	   Wilcoxon sign-ranks test 
     (5) Increasing complexity does not decrease system observability	 
     (6) Increasing complexity does not decrease system usability	 

Z 6 ¡1.645 
p-Value 6 .05 

2. Normal accident theory 

Perrow, an organizational  theorist,  is  the originator of  NAT. His work emerged in 1979 
when  he  was advising  a  Presidential  commission investigating  the  accident at Three  Mile 
Island (TMI Harrisburg,  PA). In essence,  Perrow identiWed system complexity  as the 
primary accident cause; thus, the TMI accident was labeled a normal accident because this 
type of accident is inevitable with complex  technological systems (Perrow,  1999). 

NAT identiWes  two  important system characteristics—interactive  complexity  and tight 
coupling—that  make  complex systems especially  prone  to system  accidents. Interactively 
complex systems have  the  potential  to generate  many branching paths among subsystems. 
These  interactions can be  unexpected, unplanned,  incomprehensible,  and even  unperceiv
able  to system  designers or system users. Coupling is a  measure  of the  strength of the  inter-
connectedness  between  system  components. Tightly  coupled  systems  have  little  or no 
slack; thus, they  rapidly respond to and propagate  perturbations such that  operators do 
not have  the  time  or ability to  determine  what is  wrong. As a result,  human intervention is 
unlikely  or improper. 

2.1. NAT limitations 

NAT is limited in its applicability. First,  it  addresses a  narrow category  of accidents— 
industrial  disasters  of unforeseen events resulting  in great damage  and loss. Thus,  it has  not 
been  extended to more  commonly encountered  accidents of  limited  scope.  Secondly, NAT 
addresses safety  in  the  context of  organizational  structures  for complex,  industrial  systems 
such  as nuclear  power  plans,  oil  reWneries,  and chemical  plants.  Thus,  it  does  not focus on 
the  details of  the  system  and its components.  Thirdly,  the  theory has not been  extended  to 
computerized  systems  using software.  This limitation is  realized  by Perrow:  “The  metaphor 



         
   

 
    

 
   

    
  

    
    

       

       
   

 
    

of an accident residing in the complexity and coupling of the system itself, not in the fail
ures of its components has seeped into many areas where I never thought to apply it” (Per
row, 1999, p. 354). Perrow cites software as a neglected or new area to consider. 

NAT is also limited by a lack of reWnement in deWning and quantifying its terms and 
concepts. “Ill-deWned concepts” and “the absence of criteria for measuring complexity and 
coupling” have been cited as signiWcant limitations (Hopkins, 1999). Quantitative measures 
of interactive complexity and coupling would address these limitations and could serve to 
promote the theory in new areas. 

2.2. Related  NAT research 

The validity and application of NAT to petroleum reWneries  has been researched (Wolf, 
2000). A reWnery system  was modeled as  a  hierarchy of  system  units, links, and nodes. 
Links are  the  system  pipes that  carry raw material,  byproducts,  Wnal  product,  and wastes. 
Nodes are  points of connection and interconnection between  unit processes and links. 
They  are  also the  points for control and monitoring  of parameters such as Xow,  pressure, 
and temperature.  Using  this system  model,  a  “reWnery-speciWc”  index of complexity was 
created based on reWnery  process knowledge  and the  number of  unit  processes,  links, and 
nodes. This index,  Ciplant,  served  to quantify and estimate  the  interactive  complexity  for a 
reWnery. Ciplant represented the  maximum number of states the system could exist. 

Wolf’s  conclusions support the  validity of  NAT. ReWneries  characterized  by high  com
plexity and tight  coupling had more  occurrences  of accidental releases of hazardous mate
rials and more  Wres and explosions. However, two limitations are  evident in this research. 
First,  the  index of complexity Ciplant is  speciWc to  reWneries  and is not generalized to other 
applications. Second,  NAT  was  validated  for a  narrow spectrum  of accidents:  reWnery 
disasters involving untoward releases  of hazardous material,  Wres, and explosions. There
fore, NAT was not expanded to other types of accidents besides disasters. 

Coskun and Grabowski (2001)  addressed the  challenge  of measuring  complexity by 
using  an integrated metrics approach. This  approach  used an  interdisciplinary  complexity 
model  encompassing six  domains. This interdisciplinary complexity model was used  to 
measure  the  complexity of software. Software  complexity  is important to address but soft
ware  metrics  alone  are  not suYcient  to  address  safety because  safety  is  an  emergent  prop
erty of  the  system. 

3. Operationalizing NAT 

Operationalizing NAT transfers the theory to practice by establishing concrete, quanti-
Wable measures of system complexity. The operationalization process involves establishing 
a conceptualized system model, identifying which NAT attributes to measure, and deWning 
multiple metrics to measure or indicate the NAT attributes. 

3.1. System  model 

The Wrst challenge is to formally model the speciWed behavior (requirements) of a 
system. System requirements deWne what the system shall do, deWning system behavior by 
specifying system inputs (stimuli), system outputs (responses), and the behavioral relation
ships between the inputs and outputs. The model needs to provide an abstraction to 



       
  

    
      
      

    
            

     
   

    
    

  
        

    
     

         
         

      
        

         

     
      

      

    

identify the most important system features, elements, and relationships. The model also 
needs to enable direct or indirect measurements of internal complexity and coupling. 

The software cost reduction (SCR) method was used for specifying and modeling a sys
tem model. SCR is based on the Parnas four-variable model. This model is a black box 
view of system inputs, outputs, and external behavior; thus, the model captures the 
required external behavior, devoid of implementation or structural design aspects. SCR is 
based on a Wnite state machine model of the system where the system L is a 4-tuple, 

0L D (Em , S, s , T), where Em D set of input events, S D set of system states, s0 D set of initial 
states with s0 � S, and T D the system transform (Heitmeyer et al., 1998). 

Additionally, an integrated environment called the SCR toolset was developed for for
mally specifying, modeling, simulating, and analyzing complex systems. The toolset 
includes a Dependency Graph Browser that displays dependencies between SCR model 
variables as a directed graph (Fig. 1). The dependency graph also provides a mapping of 
controlled variables (outputs) to monitored variables (inputs). Each variable is depicted as 
a node; an arrow represents a dependency between nodes where value of the variable at the 
tail depends on the value of the variable at the head. Another tool is available for creating 
a user interface for the system model. The user interface can provide transparent control of 
system simulations. 

Fig. 1. An SCR dependency graph. Source: Naval Research Laboratories. 

3.2. NAT attributes 

NAT identiWes 13 attributes of complex systems and categorizes them as either interac
tively complex or tightly coupled. Our research established a more abstract categorization 
of external and internal complexity as part of our inductive process to identify the NAT 
attributes to operationalize. 

External complexity was characterized with three variables: system predictability, 
observability, and usability. These variables were viewed in the context of an operator 
interacting with the system. Situations of poor system predictability, observability, and 



   
  

    
    

     
     

      
    

      
     

      
    

    
      

     
      

       

        
       

       
      

     
        

      
 

      
       

     
 

      
    

   

    

usability can contribute to human error or worse, mishaps. For instance, predictability 
concerns unfamiliar, unplanned, or unexpected system behaviors as viewed system’s opera
tor. These behaviors can result in unplanned machine movements or unexpected machine 
startups. A speciWc example concerns unpredictable mining machine movements that 
occurred in the US and Australia that in some cases resulted in injury or even fatalities 
(Sammarco, 2003). Complex system behaviors can also be transparent making them diY
cult to observe or comprehend by the end-user (Perrow, 1999). Observability also declines 
if the end-user is overwhelmed with information as happened to operators during the 
Three Mile Island mishap. Poor predictability and observability can negatively impact sys
tem usability. Hence, system complexity can be indicated by an external component char
acterized with three variables: system predictability, observability, and usability. These 
were the dependent variables for our research. 

Internal complexity concerns a system’s internal structure. Internal complexity was 
characterized by modeling system requirements with SCR, and quantifying NAT attri
butes represented in a SCR dependency graph with graph-theoretical metrics—the inde
pendent variables. SpeciWc NAT attributes to operationalize were identiWed by deduction: 
(1) abstracting NAT attributes of complexity to a generalized view of simple (linear) and 
complex (nonlinear) systems; (2) selecting a subset of NAT attributes pertaining to linear 
and nonlinear systems; (3) identifying a general set of metrics to measure or indicate the 
subset of NAT attributes. 

3.3. System  linearity 

Simple systems are linear. A single line of dominos provides an example. A single distur
bance of a domino starts a linear chain of events where one domino pushes over the next. 
This chain of events follows a highly observable, predictable, and linear sequence of events. 

Nonlinear systems are complex. They have multiple branching paths to system compo
nents and subsystems; hence, nonlinear systems are highly interconnected. A car wind
shield provides a nonlinear system example. A single disturbance, such as a stone hitting 
the windshield, results in multitudes of nonlinear, interconnected cracks. The extent and 
pattern of the crack is unpredictable and incomprehensible. 

A high-level abstraction of system linearity was used to select a subset of three attributes 
pertaining to linearity from the 13 NAT attributes. The resulting NAT attributes were 
interconnectivity, common-mode connections, and multiple control parameters. A set of 
15 metrics were proposed to operationalize these NAT attributes. 

3.4. Metrics 

Graph-theoretical metrics were used to measure system linearity of SCR dependency graphs. 
For instance, interconnectivity was indicated by using McCabe’s cyclomatic complex
ity V(g)—the number of linearly independent paths.

Fig. 2. A simple linear system having one path. 

 The  directed  graph  of  Fig. 2  depicts 



  
        

       

     
         

        
        

     
 

     

a simple system where V(g) D 1; thus, the single path from v1 to v4 indicates very 
low interconnectivity. A nonlinear system is depicted by Fig. 3, where V(g) D 5; 
thus, the Wve linearly independent paths from v1 to v4 indicate more system interconnec
tivity. 

Common-mode connections increase as a system becomes more nonlinear. For instance, 
vertices v2, v3, and v4 of Fig. 3 have a common-mode connection established by vertex v1. 
Vertex v2 is another common-mode connecting v2 to v3, v4, and to itself via a self loop at 
v2. The out-degree metric quantiWes a common-mode connection. The out-degrees of verti
ces v1 and v3 are od(v1) D 3 and od(v2) D 3. By comparison, od(v1) D 1 and od(v2) D 1 for 
the simple linear system of Fig. 2. 

Fig. 3. A nonlinear system having Wve paths. 

Multiple  control  parameters are  used to determine  the  paths of control  in a  graph. The 
number of control parameters increases as  a  system  becomes more  nonlinear. For instance, 
the  number of edges  into a vertex  (in-degree)  is  indicative  of the  quantity of control param
eters for that vertex. The in-degree of vertex  v4 (Fig. 3) is three in comparison to a value of 
one for vertex  v4 (Fig. 2). 

This section has presented just a  few  of the  metrics for the  NAT  attributes  of intercon
nectivity,  common-mode  connections, and multiple,  interacting control  parameters. Ulti
mately,  a set of  15 metrics  {X1 ,X2,X3, ƒ , X15} were  identiWed  as candidates to 
operationalize  NAT. This set  of metrics was based on three  system  abstractions and pro
jections (perspectives). The  rationale  was that  a  single  abstraction or projection could not 
aVord all the  necessary  metrics  because  complexity  is multidimensional.  These  abstractions 
were created from SCR dependency graphs, as follows: 

•	 Scenario subgraph; a  course-grained abstraction induced  by the  dependency graph 
edges and vertexes that are used for a given set of user tasks. 

•	 Critical-state  subgraph;  a  medium-grained abstraction derived from  the  scenario sub-
graph. 

•	 Critical-vertex  subgraph; a  Wne-grained abstraction for each  vertex of the  critical-state 
subgraph. 

These projections were created for the three subgraph abstractions: 

•	 Input projection; a  view of all dependencies with respect  to the  input vertices (i.e., all  the 
ancestors of a given input vertex). 

•	 Output projection; a view of all  dependencies with  respect  to the output vertices (i.e.,  all 
the  descendents of a given output vertex). 

•	 All projection; a view of all dependencies with respect to input and output vertices. 



    
 

    
       

       
  

        
       

         

 
         

        
   

     

       
    

        
    

    
 

   
        

4. Methodology 

4.1. Research procedures 

Dependent variable data were  obtained from subject perceptions of a PC-based simula
tion of  a  light control  system  (LCS). The  experiment consisted of  two major parts. First, 
subjects learned the  operation of the  LCS. Next,  subjects followed written instructions  to 
run three  test scenarios on a PC-based LCS simulator; each scenario was a  set  of typical 
user  tasks. After each  scenario was completed, subjects  answered a questionnaire  concern
ing subject  perceptions of  the  LCS,  took a short break,  and  then began the  next test  sce
nario. 

The  questionnaire  was used  to quantify  the  dependent variables. It  was based  on two 
respected  and validated instruments:  the  questionnaire  for user  interaction  satisfaction 
(Human Computer Interaction Laboratory, 2004) and the  software usability measurement 
inventory (Human Factors Research  Group,  2004).  Closed and open-ended questions were 
used, with a  Wve-level Likert scale  from  1  (lowest)  to 5 (highest) for the  closed-ended ques
tions. A portion of the questionnaire is given in Appendix. 

4.2. Research design 

The design was based on a cross-over design—a standard design with an established 
validity. The research also used a standard usability evaluation method called the discount 
usability engineering method. 

The cross-over design used two treatments (A and B) and two washout periods (breaks). 
The independent variables were manipulated to increase NAT complexity for treatment A; 
treatment B had the independent variables manipulated to decrease complexity. A washout 
or waiting period was established between treatments to minimize carryover or residual 
learning eVects from the prior treatments. The washout periods were just a few minutes 
because the residual eVects were not physiological. Also, short washout periods were 
needed to keep the total test time relatively short. Lengthy washout periods could have 
confounded data because of subject fatigue or boredom. 

The basic sequence was to give half the subjects treatment A, let the subjects rest during 
the washout period, and then have subjects receive treatment B. The other half of the sub
jects had the same treatments, but the order was reversed. Thus, given these sequences, the 
cross-over design had signiWcant advantages: the subjects served as their own control, there 
was greater sample size eYciency with randomization of treatment order, and all subjects 
received all the treatments. 

Treatments A and B were both applied to each of the three scenarios. The sequence of 
scenarios and treatments were optimized for a cross-over design (Jones and Kenward, 
1998). Tables 2 and 3 list the test sequences. Half the subjects were randomly assigned to 
sequence 1 and the other half to sequence 2. 

The discount usability engineering method was used to evaluate system usability, which 
was a dependent variable. The method uses three techniques: scenarios, simpliWed thinking 
aloud technique, and heuristic evaluation. The simpliWed thinking aloud technique encour
ages the subjects to vocalize their thoughts as they perform typical tasks. Observers 



   

      
       

    
       

   
      

recorded these thoughts and encouraged the users to vocalize their thoughts and provide 
user feedback. 

   

 

Table 2 
Sequence 1 ordering of scenarios and treatments 

Order Scenario Treatment 

0 a 
1 b 
2 1 A 
3 b 
4 2 B 
5 b 
6 3 A 
7 b 
8 2 A 
9 b 
10 1 B 
11 b 
12 3 B 

a—Warm-up session. 
b—Washout period. 

   

 

Table 3 
Sequence 2 ordering of scenarios and treatments 

Order Scenario Treatment 

0 a 
1 b 
2 3 B 
3 b 
4 1 B 
5 b 
6 2 A 
7 b 
8 3 A 
9 b 
10 2 B 
11 b 
12 1 A 

a—Warm-up session. 
b—Washout period. 

4.3. Research  vehicle 

The light control system (LCS) was used as the research test vehicle. The LCS require
ments were formalized as a case study by the Fraunhofer Institute for Experimental Soft
ware Engineering for requirements engineering seminars (Queins et al., 2000). The LCS 
oVered several advantages for research. First, “the light control case study is an example of 
a nontrivial reactive system” (Kronenburg and Peper, 2000). It represented a relatively 
complex, real-world system in that it required sensors, actuators, software, human machine 



    
     

            

      
          

   
 

     
    

    
       

     
      

      
       

      
       

    

      
    

     
 

      
  

   
      

   
      

   
      
 

interfaces, automatic control functions, manual override functions, and fault management 
functions for the detection, annunciation, and tolerance of faults. Lastly, it aVorded 
human/computer interaction. 

The LCS was to control the interior lighting of a building consisting of various oYces, 
laboratories, hallways, and staircases such that energy was not wasted and such that a safe 
environment was maintained for normal and abnormal conditions. An oYce environment is 
relatively benign with respect to safety. Loss of lighting can result in trip and fall hazards. 
More dangerous hazards would exist if the LCS was used in an industrial environment such 
as underground mining where moving equipments, rotating machinery, high-voltage electri
cal circuits, and unstable roof conditions are common. Several LCS requirements speciW

cally address fault tolerance and safety aspects applicable to safety-related applications. 
BrieXy, the LCS provides automatic and manual control for two groups of oYce lights: 

one group is near the window and the other is near the wall. The control enables the user to 
set two light scenes named occupied and vacant. The occupied light scene automatically 
maintains a user-deWned lighting intensity and light group conWguration when the oYce is 
occupied. The oYce lights are also dynamically controlled to provide a constant level of 
illumination in spite of variations in sunlight entering the oYce. The vacant light scene 
automatically provides a user-deWned light intensity and conWguration if the oYce is 
vacated for an extended time that the user deWnes. Lastly, the LCS provides manual light
ing control to over-ride the automatic controls. Manual pushbutton switches enable on/oV 
control of each light group. 

The LCS components consist of sensors, a logic solver, wall and window light actuators, 
and a user-interface panel. Five sensors are used; a motion sensor detects an occupied or 
vacant oYce; an analog sensor measures natural light in the oYce; a door closed contact 
indicates the door is open or closed; two status-line sensors indicate if the lights are turned 
on or oV. The logic solver is PC-based and it provides control functions and a user-inter
face. Manual pushbutton switches enable manual control of each light. 

The LCS system-level requirements were modeled using the SCR toolset. These require
ments deWned end-user needs, nonfunctional needs, and the required behavior of the sys
tem hardware components that included Wve sensors, two actuators, two pushbuttons, and 
two graphical user interfaces (GUIs). A model of nonideal LCS behavior (Heitmeyer and 
Bharadwaj, 2000) was expanded to provide new functionality needed by the research. A 
new PC-based GUI for the LCS was also created. The control requirements for oYces and 
laboratory spaces were identical; therefore, the problem space was scoped to a model for a 
single oYce for the research described by this paper. 

4.4. Subjects 

Thirty-two subjects  from  the  National Institute  for Occupational  Safety and Health 
participated  in testing.  All  subjects were  recruited as  volunteers by word of mouth. Thirty-
two subjects participated in  the  LCS tests and are  characterized as  follows based  upon sub
ject data collected during pre-test activities: 

• 78.1%—technical job classiWcation; 
• 71.8%—45–65 years  old; 
• 87.3%—male; 
• 100%—no prior involvement in the research; 



 
   

    
      

        
     

    
  

     
    

         
      

    
       

   
        
       

 

     
       

         
 

       
   

• 84.4%—no knowledge of the light control system test vehicle; 
• 84.4%—PC experience rated at 4 or 5 (expert). 

4.5. Observers 

Three additional volunteers were test observers that administered the tests. The observ
ers did not know the purpose of the research nor understand the operation of the LCS. 
This was intentional so as to reduce the potential for observer-induced biases. 

The observers gave the subjects instructional material for the using the LCS and GUI. 
Multiple delivery methods were used for instruction to accommodate subjects who learn 
by reading, watching, listening, or by hands-on activities. First, subjects watched a narrated 
PowerPoint presentation giving an overview of LCS. The presentation contained a video 
that provided a dynamic example of using the LCS and GUI. Next, written instructions 
were given. Lastly, the observers instructed subjects to run a warm-up session to gain 
hands-on experience. 

Observers also collected the subject questionnaires and qualitative data in the form of 
observer notes. During the testing, observers took notes on each subject’s verbal com
ments, actions, and body language with respect to predictability, observability, and usabil
ity. The qualitative data of observer notes were quantiWed by using a process of 
categorizing the data to the dependent variables and mapping the data to a Wve-point Lik
ert scale. Once the observer data were quantiWed, the mean values for each category were 
weighted by 30%, and then combined with questionnaire data for predictability, observ
ability, and usability. 

5.  Results and  discussion 

5.1. Subject responses 

The frequency of subject responses for each scenario and treatment were depicted by 
histograms. In general, the treatment B histograms for predictability, observability, and 
usability are skewed to the right (the highest level 5) more than the histograms for treat
ment A. This indicates that treatment B (less complex) was generally perceived as having 
better predictability, observability, and usability than treatment A. 

Table 4 lists the median and mode subject responses for predictability, observability, 
and usability for treatments A and B. 

 
      

   

 
 

Table 4 
Mean and mode of each dependent variable and treatment for all scenarios 

Scenario 1 
treatments 

Scenario 2 
treatments 

Scenario 3 
treatments 

A B A B A B 

Predictability median 2.42 4.38 2.5 4.67 2.64 4.95 
Predictability mode 3.0 5.0 2.5 5.0 4.67 5.0 
Observability median 3.79 4.38 3.99 4.6 4.14 5.0 
Observability mode 3.86 4.0 5.0 5.0 4.71 5.0 
Usability median 3.75 4.67 4.0 4.5 4.04 4.25 
Usability mode 4.25 5.0 4.0 5.0 4.5 5.0 

Observations of  these  data  also indicate  that 



       
          

 

  
  

     

 

       
      

treatment B was more predictable, observable, and usable because the median and mode 
values for treatment B are all greater than for treatment A with only one exception—the 
mode values are equal for observability of scenario 2. 

5.2. Internal validity analyses 

All subjects answered all questions of the questionnaire each time they completed a sce
nario. The questionnaire data had numerous internal validity checks to identify confound
ing, or invalid data, to assess data reliability, and to evaluate subject learning and fatigue 
eVects. 

Each potential threat is listed and discussed as follows: 

•	 Data confounding  from  the  scenario instructions. Subject  responses  for the  dependent 
variables  predictability, observability,  and  usability could be  biased due  to subjects 
having  diYculty  following  and understanding scenario instructions. This seems 
unlikely  based on  the  warm-up data  for variable  W1—the  mean value  for the  subject’s 
ease  of  following  and understanding the  warm-up instructions. Of  28  subjects,  24 
rated W1 very favorably with a greater than 3.94  out of a maximum of 5.0. The distri
bution for  W1 had a  positive  skew  to  the  right (the  highest  score)  as depicted  by 
Fig. 4. 

•	 Data confounding from  the graphical  user  interface (GUI).  Biased  responses  for  the 
dependent variables  predictability,  observability, and  usability could be due to subjects 
having  diYculty with  the GUI.  This  seems  unlikely  based  on  the warm-up  data for  var
iable  W2—the  mean value  for  the  subject’s ease  of using the  GUI  to run the  warm-up. 
Of  28 subjects,  24 rated W2 greater  than  3.58 out  of a maximum of  5.0  score.  The dis
tribution  for W2 had  a  positive skew to  the right  (the highest score) as  depicted  by 
Fig. 4. 

•	 Invalid data. All  subjects answered  all questions of the  questionnaire;  however, data 
from  four subjects were  eliminated  because  of consistent strings  of high ratings and 
because  these  data  were  inconsistent with observer data. For instance,  out of 36 ques
tions, 34  were  rated  5.0 (highest  rating)  and two questions were  rated 4.0.  This con
trasted with the  observer’s data which indicated much lower ratings. 

Fig. 4. Mean subject responses for the warm-up session. Graph (A) depicts the ease of following and understand
ing the warm-up instructions. Graph (B) depicts the GUIs ease of use. 



  
       

     

      
 

      
    

        
    

   
   

       
      

  

       

•	 Data  reliability. The  data reliability was accepted given Cronbach’s r D .811. An r of .70 
or  higher  is  a typical benchmark of acceptability. 

•	 Learning eVects or subject fatigue. From  inspection  of data  trends,  one  can infer  learning 
eVects and fatigue.  A  positive-sloped trend could be  an indication that subjects are 
learning  more  as time  progresses; thus, they  would rate  dependent variables  with a 
higher value. A negative-sloped trend could be an indication of subject fatiguing as time 
increases, so they  would rate  dependent variables  with a lower value.  The  data trends for 
the  sequences  1  and 2 test orders were  used to infer  data  confounding from  learning 
eVects or fatigue. Fig. 5  depicts the  data trends for sequence  1.  Data confounding  was 
not detected in either graph of sequence 1 or 2 data trends. 

Fig. 5. The mean values of each dependent variable for the sequence 1 test order. N D 14 subjects. 

5.3. Hypotheses  testing 

Hypotheses 1–3 concern the existence of correlations between subject perceptions of the 
system (the dependent variables of predictability, observability, and usability) and the set 
of 15 NAT metrics of system complexity (the independent variables). Testing of hypotheses 
1–3 used canonical correlation analysis (CCA) and structure correlations. 

CCA is a multivariate analysis technique used to identify multiple correlations between 
sets of independent and dependent variables. CCA produces a set of paired canonical vari
ates representing the independent and dependent variables so as to maximize the correla
tion. The canonical variates consist of weighted sets of the original variables. The 
weightings are called canonical coeYcients. 

These raw canonical coeYcients can be diYcult to interpret, but structure correlations 
are very useful to facilitate their interpretations (CliV, 1987; Shafto et al., 1997). Structure 
correlations are derived from the raw canonical coeYcients and represent the Pearson cor
relation of each original variable to the canonical variate. 

The results showed structure correlations exceeding .25 for Wve metrics. The Wve NAT 
metrics that correlated with the dependent variables are listed in Table 5. The structure 
correlations for the Wrst pair of canonical variates are depicted in Fig. 6. 



  
   

     
    

        
    

      

 

      
 

 

Table 5 
The NAT attribute metrics and their associated abstractions and projections 

NAT attribute Metric Abstraction Projection 

Interconnectivity 
Common-mode connections 
Control parameters 
Interconnectivity 
Control parameters 

X13—cyclomatic complexity 
X7—out-degree 
X5—number of state changes for a given input 
X2—cyclomatic complexity 
X6—in-degree 

Critical vertex 
Critical state 
Critical state 
Scenario 
Critical state 

All 
Output 
All 
Output 
Input 

        
  

Fig. 6. A graphical depiction of structure correlations for the Wrst pair of canonical variates. Note the negative 
correlation between the canonical variates. 

The bootstrap re-sampling method (Efron and Tibshirani, 1993) was used to obtain the 
estimates of standard error and the 95% conWdence limit for the structure correlations. The 
bootstrap method takes repeated samples to approximate the distribution of the original 
population. The re-sampling was done preserving the treatment group sample sizes. The 
results of 1000 bootstrap samples were standard errors of less than .10, and a statistically 
signiWcant 95% conWdence interval as listed in Table 6. 

 
       

Table 6 
Structure correlations and statistical signiWcance measures for the Wrst pair of canonical variates 

Independent 
variables 

Structure 
correlation 

Standard 
error 

ConWdence limits 

5% 95% 

X13 
X7 
X5 
X2 
X6 

0.542 
0.316 
0.315 
0.294 
0.272 

0.07596 
0.08953 
0.08834 
0.08835 
0.09122 

0.420 
0.175 
0.174 
0.148 
0.127 

0.665 
0.463 
0.461 
0.438 
0.421 

A Wilcoxon signed-ranks test  was used to test null  hypotheses 4–6—increasing  NAT 
complexity does not decrease  system  predictability,  observability,  and usability. The  results 
(Table  7) showed that subjects perceived  the  test scenario outcomes of the complex  system 
(treatment A) as  less predictable,  observable,  and usable  in comparison to the  simpler 
system (treatment  B).  The  statistical  signiWcance measure was determined by using 1-tailed 
p-values. 



    
          

      
     

       
       

      

    
    

      
    

  
      

        
      

  

    
  

        
     

    
     

      

5.4. Discussion 

Test results for hypotheses 1–3, as depicted by Fig. 6, show negative structure correla
tions for the canonical variate composed of the original dependent variables (note that a 
perfect negative correlation is ¡1). Therefore, as the independent variables X13, X7, X5, 
X2, and X6 increase, the dependent variables of predictability, observability, and usability 
decrease. 

The statistical test results (Table 7) for hypotheses 4–6 indicate that treatment A 
was perceived by subjects as more complex than treatment B. These results were statis
tically signiWcant given that the  p-values exceeded the statistical signiWcance level of 
0.05. 

   

 
 

    

Table 7 
Wilcoxon signed-ranks test results for treatments A and B 

Wilcoxon signed-ranks Predictability Observability Usability 
test (1-tailed) (treatments B–A) (treatments B–A) (treatments B–A) 

Z 
p-Value 

¡7.230a 

.000¤ 
¡6.014a 

.000¤ 
¡5.574a 

.000¤ 

¤ Statistical signiWcance <.001 (1-tailed). 
a Based on negative ranks. 

In  summary,  the  null  hypotheses 1–6  were  all  rejected given the statistical  signiWcance  of 
test results and the steps taken to guard internal validity. 

5.5. Implications 

A methodology for the quantiWcation of NAT complexities for system-level require
ments was presented. Early quantiWcation of NAT complexities impacting safety could 
help system designers identify, analyze, and mitigate safety-related system complexities 
before they are propagated to subsequent life-cycle phases. Safety is an emergent property 
of the system, so safety must be addressed at the system level as done by this research. This 
is in contrast a safety approach that quantiWes attributes of the software subsystem. This 
does not address the system directly and also would take place much later in the system life 
cycle when the software is already written. Thus, system modiWcations would be more diY
cult and costly to correct. 

6. Conclusions 

This work is a promising and signiWcant step in meeting the research objective: to oper
ationalize NAT for the system-level requirements of safety-related computer systems. 

The research objective was partially realized. This claim is qualiWed as partial 
because the research was limited to one system and 32 test subjects; more empirical 
research is needed to establish external validity. Two arguments support this qualiWed 
claim. First, there was a statistically signiWcant, negative correlation between Wve NAT 
metrics of complexity and the externally visible system attributes of predictability, 



observability,  and usability. Secondly,  each of the  speciWc  aims  for operationalizing NAT 
was  realized. 

•	 SpeciWc aim 1. Identify a  formal  modeling  method for system  requirements which will 
aVord quantiWcation of NAT  attributes. 
The  SCR models and simulations successfully  served the  research needs for modeling, 
simulating, and analyzing human-computer  interactions in the  context of  NAT. The 
SCR dependency graphs accommodated multiple  levels of  system  abstraction and the 
multiple  projections needed for speciWc  aim  3.  Secondly,  the  SCR toolset successfully 
supported simulation  of our  model. Subjects were  able  to quickly  learn (in  about 
10 min) to run the  simulation and eVectively  understand the  simulation such  that  useful 
data  were  collected. 

•	 SpeciWc aim  2. Identify  the  NAT  attributes  to be  operationalized with respect  to system 
requirements. 
A process of deduction enabled us to ascertain that three  of 13 NAT  attributes  can  be 
observed in SCR  dependency models of system  requirements. Our premise  was  that 
NAT  attributes  could be  generalized  to linearity. Complex  systems  are  nonlinear; simple 
systems  are  linear. From  this  premise,  our reasoning  led us to identify three  NAT  attri
butes  to operationalize: interconnectivity,  common-mode  connections, and multiple 
control  parameters. 

•	 SpeciWc aim  3. Identify potential metrics  for each NAT attribute to be operationalized. 
This  aim  was  satisWed as evidenced by 15  metrics proposed to measure  or indicate  the 
three  NAT attributes from  speciWc  aim  2. We  infer a degree  of  validity  to the  proposed 
metrics because  our selection process addressed the  multidimensional  aspects of com
plexity by using multiple system abstractions and perspectives to obtain our metrics. 

•	 SpeciWc aim  4. Identify the  metrics  that are  useful measures of NAT  complexity. Analy
sis results showed  that  Wve  out  of  the  15 proposed  metrics  had structure  correlations 
exceeding  .25,  standard errors of less  than  .10,  and statistically  signiWcant conWdence 
intervals. 

6.1. Limitations 

Limitations of this research are as follows: 

•	 Predictive  limitations. The  research  did not develop mathematical  models and inference 
procedures  to identify and assign a  probability  to future  outcomes;  one  thus cannot 
make  outcome  predictions based solely on the metric values. 

•	 Limited  subject diversity. The  data  from  our volunteer  subject  characterizations indi
cates a relatively  homogenous group of  people.  This  can potentially threaten  external 
validity  with respect  to  generalizations to other populations. We  infer that  it was 
more diYcult  to  elicit  negative subject perceptions  of system  predictability,  observ
ability,  and usability (the  dependent variables) because  the  typical subject  was 
an engineer  with considerable  analytical  abilities  and experiences  with  technical sys
tems. 

•	 Unknown external  validity. The resulting  set  of independent variables X13,  X7,  X5,  X2, 
and X6 and the  rejection of the  null hypotheses were  based  on statistically  signiWcant 
test results  speciWc  to  the  data set.  It is not known if  these  independent  variables  are 



       
 

useful for other systems, or if the same inferences concerning the six research hypotheses 
pertain to other systems. 

Appendix 

This appendix contains a  portion of the  subject questionnaire.  The  questions are  for sce
nario 1,  treatment B. All scenarios and treatments had identical questions. 

System predictability 
3.1 What is your initial  opinion of the system’s behavior? 

3.1.1	 confusing understandable
 
1 2 3 4 5
 

3.1.2	 unpredictable predictable
 
1 2 3 4 5
 

3.1.3	 unstable stable
 
1 2 3 4 5
 

3.2	 How diYcult  is anticipating  the system’s output or behavior? 
diYcult easy 
1 2 3 4 5 

System observability 
3.3 Does the system keep you informed about its status or state? 

3.3.1	 never always
 
1 2 3 4 5
 

3.3.2	 inappropriately appropriately
 
1 2 3 4 5
 

3.4	 Recognizing a change in the  system’s  status is 
diYcult easy 
1 2 3 4 5 

3.5	 Understanding the meaning or implications of a change in system’s status is 
diYcult easy 
1 2 3 4 5 

3.6	 Recognizing changes in the display information is 
diYcult easy 
1 2 3 4 5 

System usability 
3.7	 The  ability to Wnd information is 

diYcult easy 
1 2 3 4 5 

3.8	 Can the scenario be  performed  in a straight-forward manner? 
never always 
1 2 3 4 5 

3.9	 Rate the scenario’s complexity. 
high low 
1 2 3 4 5 

3.10 Please write any comments. You may use the back of this page. 
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